

REGULATOR 48 x 48 mm CONTROLLER 48 x 48 mm **RE70**

LUMEL

INSTRUKCJA OBSŁUGI - SZYBKI, START PL USER'S MANUAL - QUICK START

Pełna wersja instrukcji dostępna na Full version of user's manual available at www.lumel.com.pl

PL

1. WYMAGANIA PODSTAWOWE, BEZPIECZEŃSTWO UŻYTKOWANIA

W zakresie bezpieczeństwa użytkowania regulator odpowiada wymaganiom normy PN-EN 61010-1.

- montażu i instalacji połączeń elektrycznych powinna dokonać osoba z uprawnieniami do montażu urządzeń elektrycznych,
- przed załączeniem regulatora należy sprawdzić poprawność połączeń,
- przed zdjęciem obudowy regulatora należy wyłączyć jego zasilanie i odłączyć obwody pomiarowe,
- zdjęcie obudowy regulatora w trakcie trwania umowy gwarancyjnej powoduje jej unieważnienie,
- Urządzenie jest przeznaczone do instalowania i używania w przemysłowych elektromagnetycznych warunkach środowiskowych,
- w instalacji budynku powinien być wyłącznik lub wyłącznik automatyczny, umieszczony w pobliżu urządzenia, łatwo dostępny dla operatora i odpowiednio oznakowany.

2. MONTAŻ

2.1. Instalowanie regulatora

Przymocować regulator do tablicy czterema uchwytami śrubowymi wg rys. 1. Otwór w tablicy powinien mieć wymiary 45^{+0,6} x 45^{+0,6} mm. Grubość materiału, z ktorego wykonano tablicę, nie może przekraczać 15 mm.

Rys. 1. Mocowanie regulatora

Wymiary regulatora przedstawiono na rys. 2.

Rys. 2. Wymiary regulatora

2.2. Podłączenia elektryczne

Patrz str. 21 , rys. 3-7.

ΡI

PL 3. ROZPOCZĘCIE PRACY

Po załączeniu zasilania regulator wykonuje test wyświetlacza, wyświetla napis $r \in \mathcal{F}$, wersję programu, a następnie wyświetla wartość mierzoną. Na wyświetlaczu może być komunikat znakowy informujący o nieprawidłowościach (tablica 11 - patrz pełna wersja instrukcji obsługi, dostępna na www.lumel.com.pl). Fabrycznie ustawiony jest algorytm regulacji załącz-wyłącz z histerezą podaną w tablicy 2 (patrz pełna wersja instrukcji obsługi, dostępna na www.lumel.com.pl).

Rys. 8. Wygląd płyty czołowej regulatora.

Zmiana wartości zadanej

Wartość zadana jest wyświetlana po naciśnięciu przycisku lub , świeci wtedy dioda SP. Aby zmienić wartość zadaną należy ponownie nacisnąć przycisk lub (rys. 9). Rozpoczęcie zmiany sygnalizowane jest migającą kropką wyświetlacza. Nową wartość zadaną należy zaakceptować przyciskiem w czasie 30 sekund od ostatniego naciśnięcia przycisku lub w przeciwnym wypadku regulator przejdzie do wyświetlania wartości mierzonej z ustawioną poprzednio wartością zadaną.

wartość mierzona

aby zmienić wartość zadaną naciśnij jeden z przycisków

Rys. 9. Zmiana wartości zadanej.

4. OBSŁUGA

Obsługa regulatora jest przedstawiona na rys. 10

PL

4.1. Programowania parametrów regulatora

Wciśnięcie i przytrzymanie przez około 2 sekundy przycisku powoduje wejście do matrycy programowania. Matryca programowania może być zabezpieczona kodem dostępu. W przypadku podania nieprawidłowej wartości kodu możliwe jest tylko przejrzenie ustawień - bez możliwości zmiany.

Rvs. 11 przedstawia matrycę przejść w trybie programowania. Przechodzenie pomiedzy poziomami dokonuje się za pomoca przycisków 🔽 lub 🔺 a wybór poziomu za pomoca przycisku 🔫. Po wybraniu poziomu przechodzenie pomiedzy parametrami dokonuje się za pomocą przycisków 💌 lub 🔺. W celu zmiany nastawy parametru należy postepować wo punktu 6.3 (patrz pełna wersia instrukcji obsługi, dostępna na www.lumel.com.pl). W celu wyjścia z wybranego poziomu należy przechodzić pomiędzy parametrami aż pojawi się symbol [. . .] i wcisnąć przycisk - . Aby wyjść z matrycy programowania do normalnego trybu pracy należy przechodzić pomiedzy poziomami aż pojawi się symbol [...] i wcisnać przycisk -Niektóre parametry regulatora moga być niewidoczne – uzależnione jest to od bieżącej konfiguracji. Opis parametrów zawiera tablica 1 (patrz pełna wersja instrukcji obsługi, dostępna na www.lumel.com.pl). Powrót do normalnego trybu pracy nastepuje automatycznie po upływie 30 sekund od ostatniego naciśniecia przycisku.

4.2. Matryca programowania

1 08	unit	1 n E S	8-61	SHI F	8 P	
Parametry wejścia	Jednostka	Typ wejścia	Rodzaj linii	Przesunięcie wartości mierzonej	Pozycja punktu dziesiętnego	'⊃ Przejście do poziomu wyżej
0028	ουδ			Į.	Į.	
Parametry wyjścia	Konfiguracja wyjścia	 Przejście do poziomu wyżej 				
ctrl	860	EŠPĒ	ну	SELO	SE.K.	
Parametry regulacji	Algorytm regulacji	Rodzaj regulacji	Histereza	Dolny próg dla samostrojenia	Górny próg dla samostrojenia	O Przejście do poziomu wyżej
Pid	РЬ	٤,	60	90	٤٥	
Parametry PID	Zakres proporcjonal- ności	Stała czasowa całkowania	Stała czasowa różniczkow ania	Korekta sygnału sterującego, dla regulacji typu P lub PD	Okres impulsowania	Drzejście do poziomu wyżej
818-	RLSP	RL.du	8L.X3			
Parametry alarmów	Wartość zadana alarmu bezwzględnego	Odchyłka od wartości zadanej alarmu względnego	Histereza alarmu	[→] Przejście do poziomu wyżej		
SPP	SPL	SPH				
Parametry wartości zadanej	dolne ograniczenie nastawy wartości zadanej	górne ograniczenie nastawy wartości zadanej	D Przejście do poziomu wyżej			
SEru	SECU	SEFO				
Parametry serwisowe	Kod dostępu	Funkcja samostrojenia	 Przejście do poziomu wyżej 			
 ⊃Wyjście z menu						

Rys. 11. Matryca programowania

ΡI

PL 4.3. Zmiana nastawy

Zmianę nastawy parametru rozpoczyna się po naciśnięciu przycisku podczas wyświetlania nazwy parametru. Przyciskami i dokonuje się wyboru nastawy, a przyciskiem akceptuje. Anulowanie zmiany następuje po jednoczesnym naciśnięcie przycisków i lub automatycznie po upływie 30 sekund od ostatniego naciśnięcia przycisku. Sposób zmiany nastawy pokazano na rys. 12.

Rys. 12. Zmiana nastawy parametrów liczbowych i tekstowych.

Sygnały wejściowe oraz zakresy pomiarowe dla wejść Tablica 1

Typ czujnika	Norma	Ozna- czenie	Zakres	
Pt100	PN-EN 60751+A2:1997	Pt100	-200850 °C	-3281562 °F
Pt1000	PN-EN 60751+A2:1997	Pt1000	-200850 °C	-3281562 °F
Fe-CuNi	PN-EN 60584- 1:1997	J	-501200 °C	-582192 °F
Cu-CuNi	PN-EN 60584- 1:1997	Т	-50400 °C	-58752 °F
NiCr-NiAl	PN-EN 60584- 1:1997	к	-501372 °C	-582501,6 °F
PtRh10-Pt	PN-EN 60584- 1:1997	S	01767 °C	323212,6 °F
PtRh13-Pt	PN-EN 60584- 1:1997	R	01767 °C	323212,6 °F
PtRh30-PtRh6	PN-EN 60584- 1:1997	В	01767 °C ¹⁾	323212,6 °F ¹⁾
NiCrSi-NiSi	PN-EN 60584- 1:1997	N	-501300 °C	-582372 °F

¹⁾ Błąd podstawowy odnosi się do zakresu pomiarowego 200...1767 °C (392...3212,6 °F)

* Rezystancja linii czujnika <10 Ω/przewód; połączenie należy wykonać przewodami o jednakowym przekroju i długości

Błąd podstawowy pomiaru wartości rzeczywistej

0,3%, dla wejść termorezystancyjnych,

0,3%, dla wejść dla czujników termoelektrycznych (0,5% – dla B, R, S); Czas pomiaru: 0,33 s

Wykrywanie błędu w obwodzie pomiarowym:

- termoelement, Pt100: przekroczenie zakresu pomiarowego

PL

Rodzaje wyjść:

 - przekaźnikowe beznapięciowe: styk przełączny, obciążalność 5 A/230 V a.c., maksymalnie 200 tys. cykli przełączeń dla obciążenia rezystancyjnego 5A 230 V a.c.

Sposób działania wyjść:

-rewersyjne: dla grzania; - wprost: dla chłodzenia

Znamionowe warunki użytkowania:

- napięcie zasilania: 230 V a.c. ±10%
- częstotliwość napięcia zasilania: 50/60 Hz
- temperatura otoczenia: 0...23...50 °C
- temperatura przechowywania: -20...+70 °C
- wilgotność względna powietrza < 85 % (bez kondensacji pary wodnej)
- czas wstępnego nagrzewania: 30 min
- położenie pracy: dowolne
- Pobór mocy < 4 VA

Masa < 0,25 kg

Stopień ochrony zapewniany przez obudowę wg PN-EN 60529

- od strony płyty czołowej: IP65
 - od strony zacisków: IP20

Błędy dodatkowe w znamionowych warunkach użytkowania spowodowane:

- kompensacją zmian temperatury spoin odniesienia termoelementu ≤ 2 °C
- zmianą rezystancji linii czujnika termorezystancyjnego ≤ 50 % wartości błędu podstawowego

- zmianą temperatury otoczenia ≤ 100 % wartości błędu podstawowego /10 K

Wymagania bezpieczeństwa wg PN-EN 61010-1¹⁾

- izolacja pomiędzy obwodami: podstawowa
- kategoria instalacji: III
- stopień zanieczyszczenia: 2
- maksymalne napięcie pracy względem ziemi:
 - dla obwodu zasilania, wyjścia 300 V
 - dla obwodów wejściowych 50 V
- wysokość npm poniżej 2000 m

Kompatybilność elektromagnetyczna

- odporność na zakłócenia elektromagnetyczne wg normy PN EN 61000-6-2
- emisja zakłóceń elektromagnetycznych wg normy PN EN 61000-6-4

6. KOD WYKONAŃ

		Т	ablio	ca 2
	RE70	XX	Х	X
Wykonanie:				
standardowe		00		
specjalne*		ΧХ		
Wersja językowa:				
polska			Ρ	
angielska			Е	
inna*			Х	
Wymagania dodatkowe:				
bez dodatkowych wymagań				0
z atestem Kontroli Jakości				1
wg uzgodnień z odbiorcą				X

* tylko po uzgodnieniu z producentem

ΕN

1. BASIC REQUIREMENTS, OPERATIONAL SAFETY

In the safety service scope, the controller meets to requirements of the EN 61010-1 standard.

Observations Concerning the Operational Safety:

- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- Before switching the controller on, one must check the correctness of connections to the network.
- Do not connect the controller to the network through an autotransformer.
- The removal of the controller casing during the guarantee contract period may cause its cancellation.
- The controller fulfills requirements related to electromagnetic compatibility in the industrial environment
- When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the room. This switch should be located near the device, easy accessible by the operator, and suitably marked as an element switching the controller off.
- Non-authorized removal of the casing, inappropriate use, incorrect installation or operation, create the risk of injury to personnel or meter damage.

2. INSTALLATION

2.1. Controller Installation

Fix the controller in the panel, which the thickness should not exceed 15 mm, by means of four screw clamps acc. to the fig. 1. The panel cut-out should have $45^{+0.6} \times 45^{+0.6}$ mm.

Fig.1 Controller fixing in the panel

Controller overall dimensions are presented on the fig. 2.

Fig. 2. Controller dimensions.

2.2. Electrical Connections

See page 21, fig. 3-7.

EN 3. STARTING TO WORK

After turning the supply on, the controller carries out the display test, displays the $r \in \mathcal{F} \mathcal{IG}$, inscription, the program version and next, displays the measured and set value. A character message informing about abnormalities may appear on the display (table 11 - see full version of service manual, available at www.lumel.com.pl). The On-Off control algorithm with hysteresis given in the table 2 (full version of service manual) is set by the manufacturer.

Fig. 8. Overview of the controller's front panel.

Changing the Set Point Value

The set point value is displayed after pressing the \frown or the \frown button, then the SP diode is lighting. In order to change the set value, one must press the \bigcirc or \frown button again (fig. 9). The beginning of the change is signaled by the dot flickering on the display. One must accept the new set point value by the \frown button in the laps of 30 seconds from the last pressure of the \bigcirc or \frown button, in the opposite case, the controller transits to display the measured value with the previously set up set point value.

to change set-point press and hold one of the button

Fig. 9. Fast change of set point value

4. SERVICE

The controller service is presented on the fig. 10

Fig. 10. Menu of controller service

ΕN

ΕN

4.1. Programming of controller parameters

The pressure and holding down the <u>-</u> button during ca 2 seconds causes the entry in the programming matrix. The programming matrix can be protected by an access code. In case when giving a wrong value of the code, it is only possible to see settings through – without possibility of changes.

The fig 11. presents the transition matrix in the programming mode.

The transition between levels is carrying out by means of the value and

▲ buttons and the level choice by means of the ← button. After choosing the level, the transition between parameters is carried out by

means of \checkmark and \checkmark buttons. In order to change the parameter setting, one must proceed acc. to the section 6.3. (see full version of service manual, available at www.lumel.com.pl). In order to exit from the selected level, one must transit between parameters until the symbol

[. . .] appears and press the *solution*. In order to exit from the programming matrix to the normal working mode, one must transit between

levels until the symbol [. . .] appears and press the 🕒 button.

Some controller parameters cannot be visible – it depends on the current configuration.

The table 1 (see full version of service manual, available at www.lumel.com.pl) includes the description of parameters. The return to the normal working mode follows automatically after 30 seconds since the last button pressure.

4.2. Programming Matrix

c	-				ç	
L C -	0	500.0				+ Turnellien
Input	Unit	Input type	Type of line	Snint or measured	decimal	to the higher
parameters				value	point	level
outp	ەەل					
Output	Outhout	transition ℃				
parameters	configuration	to the higher level				
0 th 1 th	318	5923	88	Stito	SŁ.K.	
Control	Control	Tuno of		Lower	Upper	transition ℃
parameters	algorithm	control	Hysteresis	threshold for self-tuning	threshold for self-tuning	to the higher level
0' 0	99	j.	50	205	-0	
DID	I	I	1	Correction	1	
Parameters		a section of a large start	Derivative	of control		→ Transition
	Proportional	Integral time	time	signal.	Pulse period	to the higher
	band	constant	constant	for P or PD	0000	level
				control		
RL Rr	RL.5P	RLdu	RL.HY	:		
Alarms		Deviation				
parameters	Set point for	from the set	Alarm	🕁 Transition		
	the absolute	point of the	hysteresis	to the higher		
	alarm	relative alarm		level		
500	SPL	SPH				
	lower	upper	th Transition			
Set point	limitation of	limitation of	to the higher			
parameters	the set point	the set point				
	setting	setting	ומגמ			
SEru	2 <i>5 C U</i>	کادبر				
Service		Cold to color	⇒ Transition			
parameters	Access code	function	to the higher level			
:						
⇒ Exit from						
the menu						

Fig. 11. Programming matrix

ΕN

EN 4.3. Setting Change

The change of parameter setting begins after pressing the \checkmark button during the display of the parameter name. The setting choice is carried out through \checkmark and \checkmark buttons, and accepted by the \checkmark button. The change cancellation follows after the simultaneous pressure of \checkmark and \checkmark buttons or automatically after 30 sec since the last push pressure.

The way to change the setting is shown on the fig. 12.

Fig. 12. Change of number and text parameter settings

Input Signals

Input signals and measuring ranges

Table 1

Sensor type	Standard	Desig- nation	Range	
Pt100	EN	Pt100	-200850 °C	-3281562 °F
Pt1000	60751+A2:1997	Pt1000	-200850 °C	-3281562 °F
Fe-CuNi	EN 60584- 1:1997	J	-501200 °C	-582192 °F
Cu-CuNi		Т	-50400 °C	-58752 °F
NiCr-NiAl		к	-501372 °C	-582501.6 °F
PtRh10-Pt		S	01767 °C	323212,6 °F
PtRh13-Pt		R	01767 °C	323212.6 °F
PtRh30-PtRh6		В	01767 °C ¹⁾	323212.6 °F 1)
NiCrSi-NiSi		N	-501300 °C	-582372 °F

¹⁾ Intrinsic error is related to the range limits 200...1,767 °C (392...3,212.6 °F)

* Resistance of the sensor line <10 Ω /wire; one must connect with wires of the same section and length.

Basic error of real value measurement

0.3% for thermoresistance inputs

0.3% for thermoelectric inputs (0.5% - for B, R, S);

Measurement time: 0.33 s

Detection of error in the measurement circuit:

- thermocouple, Pt100 range limit exceeded

Types of outputs:

- relay output type SPDT (form C), max load: 5 A/230 V AC,

max. 200,000 cycles for 5 A/230 V AC (resistive)

Way of output operation: reverse- for heating; direct - for cooling Rated operating conditions:

- supply voltage: 230 VAC ±10%
- supply voltage frequency: 50/60 Hz
- ambient temperature: 0...23...50 °C
- storage temperature: -20...+70 °C

ΕN

- relative air humidity < 85% (no condensation)

- preheating time: 30 min

- operating position: any

Power input < 4 VA Weight < 0.25 kg

Protection grade ensured by the housing acc. to EN 60529 from the frontal plate:IP65; from the terminal side: IP20

Additional errors in rated operating conditions caused by:

- compensation of reference junction temperature changes ≤ 2°C

- resistance change of thermoresistance sensor line $\leq 50\%$ intrinsic error value

- ambient temperature change ≤ 100% intrinsic error value /10 K Safety requirements acc. to EN 61010-1

- circuit-to-circuit insulation basic
- installation category III
- pollution grade
- maximum phase-to-earth operating voltage:
 - for supply circuit, output 300 V
 - for input circuits 50 V

- altitude a.s.l. below 2000 m

Electromagnetic compatibility:

- noise immunity, acc. to standard EN 61000-6-2

- noise emission, acc. to standard EN 61000-6-4

6. CONTROLLER VERSION CODES

	RE70	XX	Х	Х
Version:				
standard		00		
custom-made*		XX		
Language:				
Polish			Ρ	
English			Е	
other*			Х	
Additional quality requirements:				
without additional quality requirements				0
with an extra inspection quality certifica	te			1
acc. to customer's request				Х
*				

*- only after agreeing with the manufacturer

SCHEMATY PODŁĄCZEŃ

ELECTRICAL CONNECTIONS

Regulator ma dwie listwy rozłączne z zaciskami śrubowymi. Jedna listwa umożliwia przyłączenie zasilania i wyjścia przewodem o przekroju do 2,5 mm², druga listwa umożliwia przyłączenie sygnałów wejściowych przewodem do 1,5 mm².

Make electrical connections to terminal strip and next, insert strips into the controller sockets. The controller has two separable terminal strips. One strip enables the connection of the supply and outputs by a wire of 2.5 mm² cross-section, the second strip enables input signal connections by a wire of 1.5 mm² cross--section.

Rys. 3. Widok listew podłączeniowych regulatora. Fig. 3. View of controller connecting strips

termorezystor Pt100 w układzie 2-przewodowym RTD Pt100 in two-wire system

termorezystor Pt1000 RTD Pt1000

Pt10

_	-	2
		2
		1
	+	

termoelement thermocouple

Rys. 4. Podłączenie sygnałów wejściowych. Fig. 4. Connection of input signals.

Rys. 5. Zasilanie Fig. 5. Supply.

Rys. 6. Wyjście sterujące/alarmowe *Fig. 6. Control/Alarm*

Rys. 7. Interfejs RS-485 (tylko do konfiguracji) Fig. 7. RS-485 interface (only for configuration)

2.3. Zalecenia instalacyjne

W celu uzyskania pełnej odporności regulatora na zakłócenia elektromagnetyczne powinno się przestrzegać następujących zasad:

- nie zasilać regulatora z sieci w pobliżu urządzeń wytwarzających zakłócenia impulsowe i nie stosować wspólnych z nimi obwodów uziemiających,
- stosować filtry sieciowe,
- przewody doprowadzające sygnał pomiarowy powinny być skręcone parami, a dla czujników oporowych w połączeniu trójprzewodowym skręcane z przewodów o tej samej długości, przekroju i rezystancji oraz prowadzone w ekranie jw.,
- wszystkie ekrany powinny być uziemione lub podłączone do przewodu ochronnego, jednostronnie jak najbliżej regulatora,
- stosować ogólną zasadę, że przewody wiodące różne sygnały powinny być prowadzone w jak największej odległości od siebie (nie mniej niż 30 cm), a skrzyżowanie tych wiązek wykonywane jest pod kątem 90°.

2.3. Installation Recommendations

In order to obtain a full fastness against electromagnetic noise in an environment with unknown noise level, it is recommended to observe following principles:

- do not supply the controller from the network, in the proximity of devices generating high pulse noise and do not apply common earthing circuits,
- apply network filters,
- apply metallic shields in the shape of tubes or braids to conduct supplying wires,
- wires leading measuring signals should be twisted in pairs, and for resistance sensors in 3-wire connection, twisted of wires of the same length, cross-section and resistance, and led in a shield as above,
- all shields should be one-side earthed or connected to the protection wire, the nearest possible to the controller,
- apply the general principle, that wires leading different signals should be led at the maximal distance between them (no less than 30 cm), and the crossing of these groups of wires made at right angle (90°).

LUMEL S.A.

ul. Sulechowska 1, 65-022 Zielona Góra, Poland tel.: +48 68 45 75 100, fax +48 68 45 75 508 www.lumel.com.pl

Informacja techniczna: tel.: (68) 45 75 306, 45 75 180, 45 75 260 e-mail: sprzedaz@lumel.com.pl **Realizacja zamówień:** tel.: (68) 45 75 207, 45 75 209, 45 75 218, 45 75 341 fax.: (68) 32 55 650

Pracownia systemów automatyki: tel.: (68) 45 75 228, 45 75 117 **Wzorcowanie:** tel.: (68) 45 75 161 e-mail: laboratorium@lumel.com.pl

Export department:

tel.: (+48 68) 45 75 139, 45 75 233, 45 75 321, 45 75 386, 45 75 353 fax.: (+48 68) 32 54 091 e-mail: export@lumel.com.pl

Calibration & Attestation: tel.: (68) 45 75 161 e-mail: laboratorium@lumel.com.pl

RE70-07 RE70-09